Relation between axon morphology in C1 spinal cord and spatial properties of medial vestibulospinal tract neurons in the cat.
نویسندگان
چکیده
Twenty-one secondary medial vestibulospinal tract neurons were recorded intraaxonally in the ventromedial funiculi of the C1 spinal cord in decerebrate, paralyzed cats. Antidromic stimulation in C6 and the oculomotor nucleus identified the projection pattern of each neuron. Responses to sinusoidal, whole-body rotations in many planes in three-dimensional space were characterized before injection of horseradish peroxidase or Neurobiotin. The spatial response properties of 19 neurons were described by a maximum activation direction vector (MAD), which defines the axis and direction of rotation that maximally excites the neuron. The other two neurons had spatio-temporal convergent behavior and no MAD was calculated. Collateral morphologies were reconstructed from serial frontal sections to reveal terminal fields in the C1 gray matter. Axons gave off multiple collaterals that terminated ipsilaterally to the stem axon. Collaterals of individual axons rarely overlapped longitudinally but projected to similar regions in the ventral horn when viewed in transverse sections. The number of primary collaterals in C1 was different for vestibulo-collic, vestibulo-oculo-collic, and C6-projecting neurons: on average one every 1.34, 1.72, and 4.25 mm, respectively. The heaviest arborization and most terminal boutons were seen in the ventral horn, in laminae VIII and IX. Varicosities on terminal branches in lamina IX were observed adjacent to large cell bodies-putative neck motoneurons-in counterstained tissue. Some collaterals had branches that extended dorsally to lamina VII. Neurons with different spatial properties had terminal fields in different regions of the ventral horn. Axons with type I responses and MADs near those of a semicircular canal pair had widely distributed collateral branches and numerous terminations in the dorsomedial, ventromedial, and spinal accessory nuclei and in lamina VIII. Axons with type I responses that suggested convergent canal pair input, with type II responses, and with spatio-temporal convergent behavior had smaller terminal fields. Some neurons with these more complex spatial properties projected to the dorsomedial and spinal accessory but not to the ventromedial nuclei. Others had focused projections to dorsolateral regions of the ventral horn with few branches in the motor nuclei.
منابع مشابه
Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat.
Activity of vestibular nucleus neurons with axons in the ipsi- or contralateral medial vestibulospinal tract was studied in decerebrate cats during sinusoidal, whole-body rotations in many planes in three-dimensional space. Antidromic activation of axon collaterals distinguished between neurons projecting only to neck segments from those with collaterals to C6 and/or oculomotor nucleus. Seconda...
متن کاملTransplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic (4 week) injury. Adult female Sprague-D...
متن کاملCoupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles.
The aims of the study were twofold: (1) to verify the hypothesis that neurons in the fastigial nucleus excite and inhibit hindlimb alpha-motoneurons and (2) to determine both the supraspinal and spinal relays of these actions. Axons of fastigial neurons were stimulated at the level of their decussation in the cerebellum, within the hook bundle of Russell, in deeply anesthetized cats with only t...
متن کاملRelation between cell size and response characteristics of vestibulospinal neurons to labyrinth and neck inputs.
(1) The activity of 136 Deiters' neurons projecting to lumbosacral segments of the spinal cord has been recorded in decerebrate, partially cerebellectomized cats, and their response characteristics to sinusoidal stimulation of labyrinth and neck receptors have been related to cell size inferred from the conduction velocity of the corresponding axons. (2) Vestibulospinal neurons with faster cond...
متن کاملLoss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice1,2,3
The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys ves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 1998